Vista normal Vista MARC Vista ISBD

Quantile Regression for Spatial Data / Daniel P. McMillen

Por: McMillen, Daniel P.
Tipo de material: materialTypeLabelLibroSeries Springer briefs in regional science.Descripción: IX, 66 p. :il. ; 24 cm.ISBN: 9783642318153.ISSN: 2192-0427.Tema(s): Datos espaciales, Método estadístico, Econometría, Análisis de la regresiónRecursos en línea: Indice
Contenidos:
Lista(s) en las que aparece este ítem: 2024_11
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Signatura Estado Fecha de vencimiento Código de barras
CITA
Q-6-4104 Prestado 04/05/2052 005376

Quantile regression analysis differs from more conventional regression models in its emphasis on distributions.Whereas standard regression procedures show how the expected value of the dependent variable responds to a change in an explanatory variable, quantile regressions imply predicted changes for the entire distribution of the dependent variable. Despite its advantages, quantile regression is still not commonly used in the analysis of spatial data. The objective of this book is to make quantile regression procedures more accessible for researchers working with spatial data sets. The emphasis is on interpretation of quantile regression results. A series of examples using both simulated and actual data sets shows how readily seemingly complex quantile regression results can be interpreted with sets of well-constructed graphs. Both parametric and nonparametric versions of spatial models are considered in detail

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Con tecnología Koha